

High-performance Chilled-water Systems The Engineer's Role in Operation

Susanna Hanson, CEM DGCP

Chilled-water System

Chilled-water System Components

Diagnostics

WORST CASE HEAT INDEX

HYDROGEN SENSOR Alarm

IRE ALARM:

GENERATOR: HAZMAT EXHAUST OVERRIDE:

BATTERY CHARGE:

Minimally-compliant Chiller Plant

Conventional assumption for code range		0.75-0.90 kW/ton (annual)	
90.1-2010	Chillers + towers + CW pumps	.6888	
90.1-2013	Chillers + towers + CW pumps	.6686	

It's easy to model operation in what would have been deemed "excellent," just by meeting code.

Model ≠ Reality

- Assumption that flow perfectly varies with load
 - Coil performance assumptions
 - Hydronic dynamics ignored
 - Low delta T "syndrome"
 - Effect of valve instability on coil performance
 - If flow is unpredictable, so is pump energy
- Effects of above on equipment (pump and chiller) staging
 - Running more chillers (and pumps, and towers) than necessary
 - Chiller capacity assumed to follow load
 - Advanced models use a function of load and condensing pressure
 - None reduce chiller capacity based on low distribution delta T
- Simplified chilled water reset effects on chiller energy
 - No coil performance adjustments

But Enough About Models

Effects of Responses to Discomfort

- Occupant
 - lower zone setpoint increases GPM, may increase fan speed
 - supplement airflow fans appear on or under desks
 - complain
- Operator
 - lower leaving air setpoint decreases coil performance
 - pumps in manual, raise setpoint/speed increases GPM, pressure
 - disable SA reset lowers leaving air temp and increases reheat
 - reduce ventilation lowers coil entering air temp, degrades coil perf
- All reduce system performance
 - Low delta T and poorer coil performance
 - Increase overcooling/reheat
 - "Out of flow-- out of chiller-- need another chiller..."
 - "Maybe I just need the system balancer back out here"
 - "We must need tertiary pumps"

The Engineers' Dilemma

- Conservatism and unknowns
- Low pressure drop waterside
- Low pressure drop airside
- Fit in the box!
- Fit it in the budget!
- And we don't have money for reverse return piping
- Or pressure independent control valves
- Spend money for balancing valves and balancers!

Step One: Pick the Right Heat Exchangers

Industry Recommendations

Source	Chilled Water ∆T (°F)	Condenser Water ΔT (°F)
ASHRAE 90.1-2016 requirement	≥15	NA
ASHRAE GreenGuide	12 - 20	12 - 18
Kelly and Chan	18	14
Taylor	>12	15

Chilled Water Optimizations – ASHRAE 90.1

- Coil selection for 15°F DT or higher (57°F min return)
 -and-
- Chilled water reset based on critical valve position
 -or-
- Pump pressure reset based on critical valve position

Coil Selection: APD versus WPD versus Size

Configuration Options

- Coil face area
- Number of rows of tubes
- Tube diameter
- Number of fins
- Fin surface design
- Coil circuiting
- Turbulators

Construction Options

- Tube material
- Tube wall thickness
- Fin material
- Fin thickness
- Casing material
- Header type and material
- Coil coatings

Coil Certification Program

AHRI Standard 410

Forced-Circulation Air-Cooling and Air-Heating Coils

Laminar Flow ≠ Severe Capacity Drop-off

Conserve Energy Transporting Tons

•
$$Tons = \frac{(\Delta T \times GPM)}{24}$$

- Solving for gpm...
- $GPM = \frac{(Tons \times 24)}{\Delta T}$
- Pumping power...
- Frictional Head; Flow 2
- Water HP $(bhp) = \frac{(GPM \times head (ft))}{3960}$
- Water HP; Flow ³; Delta T ³

Lowest Cost? Lowest Energy? Neither

80°F DBT 67°F WBT 8500 cfm			
coil face area, ft ²	17	17	17
coil rows	6	6	6
coil fins, fins/ft	95	127	99
supply water temperature, °F	44	44	42
return water temperature, °F	54	57	55
water ∆T, °F	10	13	13
water flow rate, gpm	65.6	50.4	50.4
water velocity, ft/sec	3.6	2.8	2.8
water pressure drop, ft H ₂ O	8.2	5.1	5.1
air pressure drop, in H₂O	0.68	0.77	0.68
cost of the coil	base	base + 7%	base + 1%

Going for Best Energy Efficiency?

entering water temp, °F	42	42	40
leaving water temp, °F	57	62	65
water ΔT, °F	15	20	25
tube diameter, in.	1/2	1/2	1/2
rows	6	8	8
fin density, fins/ft	124	114	135
fin design	high eff	high eff	high eff
turbulators	yes	yes	yes
water flow rate, gpm	40	30	24
water velocity, ft/sec	2.8	2.1	1.6
water pressure drop, ft. H ₂ O	11.1	8.4	5.8
air pressure drop, in. H ₂ O	0.71	0.88	0.92
cost of coil	base	base + 29%	base + 34

What Does High Delta T "Unlock"

- Heat recovery
 - Warmer return water lets us fully load the chillers = more free heat
- Series chillers
 - If we can't get the DT we can't load the chillers
- Longer economizer
 - Warmer return water temperature can be cooled by towers alone
- Chilled water storage
 - DT is the most critical factor in economics and operational success of chilled water storage
- Retrofits (pipes too small, expansion without more electrical, physical size)

15°F AT Works On Condenser Side Too – Cost

15°F △T For Tower and Chiller HX Too – Energy

15°F △T For Tower and Chiller HX Too – Energy

Controls are more persistent with low flow all the time

Annualized System Performance Chiller Cooling Cond Cond Tower **System** Performance Water Water Control Type Tower (Annualized kW/ton) Fan Flow Rate Flow Type Method 0.4 0.5 0.6 0.7 8.0 0.9 1.0 1.1 (gpm/ton) VS CF 85°F VS 3 1 chiller VS VS CF Opt 2 chillers ≥ 3 chillers VS VS CF Opt 3 VS VS **VF** Opt

Higher ΔT Chilled Water Systems

Operation

Low Delta-T (High Flow) Syndrome

- Symptom of poor design and operation
- Excessive energy
 - Excessive pump energy
 - Excessive fan energy
 - Excessive chiller energy
- Decreased comfort
 - Degrades dehumidification and temperature control
- Decreased Capacity
 - Running out of chilled water capacity
 - "My Pipes Is Out of Tons"

Why is Low Delta T Bad?

- Tough to model = tough business case
- Chillers get blamed
- Fouling gets blamed
- Filters get blamed
- System balancer gets blamed
- Engineer gets blamed
- Customers and occupants unhappy

Yes BUT, Coil Delta T is lower at Part Load

Is it physics or is it something else?

- AHRI Certified Coil
- Air Flow (VAV) unloading

Turbulators Help Maintain ΔT at Reduced Flows

Turbulators...

- Increase fluid turbulence, which improves heat transfer
- Allows coil to provide required capacity with a lower GPM

Coil Conditions Change @ Part Load Impact of Entering Air Temps, Lower Airflow on \Delta T

Coil Conditions Change @ Part Load Impact of Entering Air Temps, Lower Airflow on \Delta T

Coil Conditions Change @ Part Load

Impact of Entering Air Temps, Lower Airflow on ΔT

Coil Selection Cost, Fan and Pump Energy

entering water temp, °F	42	42	42	42
leaving water temp, °F	57	57	57	57
water ΔT, °F	15	15	15	15
tube diameter, in.	3/8	1/2	1/2	5/8
rows	6	6	6	6
fin density, fins/ft	114	159	124	133
fin design	high cap	high cap	high eff	high eff
turbulators	yes	no	yes	yes
water flow rate, gpm	40	40	40	40
water velocity, ft/sec	2.7	2.8	2.8	2.1
water pressure drop, ft. H ₂ O	11.2	4.7	11.1	5.2
air pressure drop, in. H ₂ O	0.81	0.95	0.71	0.71
cost of coil	base - 30%	base	base + 8%	base + 15%

So WHY, is System Delta T Low?

Is it physics or is it something else?

Reason 1: 3-Way control valves

undesirable mixing in variable flow systems

• Eliminate them!

Coil Delta T = 17°F

System Delta T = 8.5°F

Reason 2: Supply air setpoint depression

overdriving coil capacity

- 1. 3-way control valves
- 2. Control setpoint depression
 - Avoid, limit and restore

```
55° LAT = 16° DT = 1.5 gpm/ton 

52° LAT = 11° DT = 2.2 gpm/ton 

50° LAT = 8.5° DT = 2.8 gpm/ton
```


Overdriving Coil Capacity

Reason 3: Warmer chilled water supply

reduced heat transfer driving force "LMTD"

CHW reset OK in high DT designs and at chiller min flow in VPF system

Reason 4: Deficient control valves

poor flow control at full and part loads

- 1. 3-way control valves
- 2. LAT setpoint depression
- 3. Warmer chilled water
- 4. Deficient control valves

Control Valve Issues

- Improperly Selected / Oversized
- 2. Worn-out
- 3. Unstable control
- 4. \$29.95 (cheap)
- 5. 3-way valves

Reason 4: Deficient control valves

poor flow control

- 1. 3-way control valves
- 2. LAT setpoint depression
- 3. Warmer chilled water
- 4. Deficient control valves
 - Specify quality valves specific to use

Reason 4: Deficient control valves

poor flow control

- 1. 3-way control valves
- 2. LAT setpoint depression
- 3. Warmer chilled water
- 4. Deficient control valves

Pressure independent valves? (PICV)

- Not always required
- Reverse return piping can help
- Cures many problems
- 1. Mechanical
- 2. Electronic

Pressure Independent Control Valves

mechanical PI valve

electronic PI valve

- More stable and accurate
 - Increased delta T
- Easier to select
- Easier to install
- May be cost neutral

PIC Valves

½" - 2" 1.65 -100 GPM

Mechanical

- More compact
- Will accept any rotary actuator
- Easier to select
- No additional power, programming, or sensor installation
- Now available with data sharing

Electronic

- Potential for lower hardware costs
- Provides load measurement
- Programmable for various operation methods:

2½" - 6" 80-713 GPM

- ΔT limiting
- Energy limiting
- BACnet[™] Communication to BAS system for data sharing. (requires licensing and commissioning another BACnet device)

Case Study

- Demonstrated some AHU control problems
- Two floors:
 - 3rd floor AHU kept existing conventional valves
 - 4th floor AHU retrofitted with PI valves

Case Study

3rd floor (conventional) 4th floor (PI valve)

3rd floor CHW Delta T 4th floor CHW Delta T

Reason 5: Tertiary pumping

undesirable mixing is hard to prevent

- 1. 3-way control valves
- 2. LAT setpoint depression
- 3. Warmer chilled water
- 4. Deficient control valves
- 5. Tertiary pumping / bridge tender circuits

Don't mix from the return, simply boost pressure

- Move bypass valve
- Bypass the pump (only use when needed)

Why is Low Delta-T Bad?

Energy

- Excessive pump energy
- Increased chiller plant energy
 - More pumping energy
 - Chillers running at inefficient load points

Capacity

- Running out of distribution capacity
- Chiller won't load

Leads to overrides/manual operation

Meanwhile in the Chiller Plant

Why is Low Delta T Bad for the chiller plant?

Why is Low Delta T Bad for the chiller plant?

Some Causes of Low Delta T

Flow Control

- Three-way valves
- Cheap control valves
- Uncontrolled loads
- Excessive pump pressure
- Building "bridge circuits"

Load

- Oversized coils
- Improper AHU setpoints

Maintenance

- Dirty filters or coils
- Coils piped backwards

Control

- Low AHU set points
- Unstable valve control
- Control calibration
- Improper CHW reset
- Diluted CHW supply temp

What is the number one thing you can do to improve the performance of a chiller plant?

FIX THE THINGS OUTSIDE THE PLANT

Low Delta-T Syndrome

Some Band-Aids...

- Lower the chiller's setpoint
 - Existing chiller maybe can new chiller certainly can
 - Purchase new chillers that can work at harder than design conditions also helps avoid surge and prepare for climate change
- Open the chiller balancing valves to allow more, "constant" flow to the chillers
- Convert to Variable Primary Flow
 - From constant flow this will be replacing valves
- Convert to Variable Primary / Variable Secondary
 - From primary-secondary flow this will be adding drives and maybe new pumps

Summary

- Most energy can be saved in operation
 - All systems require attention to maintain peak performance
- Bake high efficiency into the design
 - Pick the right heat exchangers (coils, chillers, towers) with high ΔT
 - Use PIC valves
 - Get extra chiller 'lift' capability rather than excessive spare tons
- Harvest more data and turn it into intelligence
 - Find and remove overrides that are unhelpful
 - Trend and review at regular intervals

Questions...